
Innovation and Green Development 3 (2024) 100140
Contents lists available at ScienceDirect

Innovation and Green Development

journal homepage: www.journals.elsevier.com/innovation-and-green-development
Full Length Article
Assessing changes in mangrove forest cover and carbon stocks in the Lower
Mekong Region using Google Earth Engine

Megha Bajaj a, Nophea Sasaki a,*, Takuji W. Tsusaka a, Manjunatha Venkatappa a,b, Issei Abe c,
Rajendra P. Shrestha a

a Natural Resources Management, Department of Development and Sustainability, Asian Institute of Technology, Pathum Thani, 12120, Thailand
b LEET Intelligence Co., Ltd., Suan Prikthai, Muang Pathum Thani, Pathum Thani, 12000, Thailand
c Kyoto Koka Wowen University, Kyoto, Japan
A R T I C L E I N F O

Keywords:
Carbon removals
Forest cover change
Mangrove forest
Result-based payment
REDDþ
* Corresponding author.
E-mail addresses: meghabajaj2018@gmail.com

i_abe@koka.ac.jp (I. Abe), rajendra@ait.ac.th (R.P

https://doi.org/10.1016/j.igd.2024.100140
Received 6 June 2023; Received in revised form 8
Available online 26 February 2024
2949-7531/© 2024 The Author(s). Published by Els
ND license (http://creativecommons.org/licenses/b
A B S T R A C T

The Lower Mekong Region (LMR) faces significant loss of mangrove forests, yet limited studies have explored this
decline in the region. Here, we employ Google Earth Engine and Landsat satellite imagery to assess changes in
mangrove forest cover across Myanmar, Thailand, Vietnam, and Cambodia between 1989 and 2020, with a five-
year interval. Accordingly, we estimated carbon stock changes due to changes of forest cover. Our analysis yielded
an overall average accuracy of 92.10% and an average kappa coefficient of 0.89 across the four countries. The
findings reveal a 0.9% increase in mangrove area in Myanmar, 2.5% in Thailand, and 1.3% in Cambodia, while
Vietnam experienced a 0.2% loss annually between 1989 and 2020. Carbon stocks in mangrove forests were
estimated at 577.0 Tg of carbon or TgC, 250.0 TgC, 61.6 TgC, and 269.0 TgC in 1989 for Myanmar, Thailand,
Cambodia, and Vietnam respectively, and increased to 736.0 TgC, 443.0 TgC, 86.7 TgC, and 254 TgC in 2020.
Increase in mangrove areas resulted in carbon removals of 42.8 TgCO2 year�1 over the same period above.
Depending on policies in these respective countries, such carbon removals could be used to claim for result-based
payment under the REDD þ scheme of the United Nations Framework Convention on Climate Change.
1. Introduction

Spanning latitudes of 25–30�N and 25–30�S (FAO, 2020) and char-
acterized by their unique ability to thrive in subtropical coastal regions,
mangroves are vital ecosystems supporting local and national develop-
ment (Saxena& Jain, 2017; Sathe et al., 2013). Globally, mangrove forest
cover has experienced a rapid decline from 18.8 million hectares (Mha)
in 1980 (FAO, 2007) to 13.7 Mha in 2000 (Chen et al., 2017). Despite a
slight recovery to 15.5 Mha in 2005 (FAO, 2007), the overall trajectory
continued to trend downwards, reaching 14.8 Mha in 2020 (FAO, 2020).
The net decrease was 1.04 Mha between 1990 and 2020 (FAO, 2020)
(Figs. SI–1). Most mangroves are founded in Asia, covering 5.55 Mha
(FAO, 2020) or approximately 39% of the total global mangrove area (Jia
et al., 2023; Thomas et al., 2017). Changes of mangrove cover in the
Lower Mekong Region (LMR), which includes Myanmar, Thailand,
Vietnam, and Cambodia have been influenced by geopolitical shifts and
growing demands in the region but such changes have not been assessed
in the LMR, hindering the introduction of appropriate measures to
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prevent further losses and facilitate restoration and conservation efforts
(Asner et al., 2010).

Assessing changes in mangrove cover serves as a baseline for resto-
ration targets (Lovelock et al., 2022), making it possible for regular
monitoring that can lead to reduction of mangrove loss (Kanniah et al.,
2015). Such assessment became possible recently through the applica-
tions of the Google Earth Engine (GEE) as the GEE has emerged as a
powerful and versatile tool with a wide range of monitoring applications
in various environmental fields. For example, the GEE has been utilized
to address pressing environmental challenges and provide data-driven
insights in the monitoring of land cover changes (Song et al., 2018),
assessing deforestation rates (Hansen et al., 2013), tracking urban
growth (Li et al., 2021), mapping wildfire dynamics (Cohen et al., 2017),
and even predicting disease outbreaks (Funk et al., 2018). Furthermore,
GEE's cloud-based infrastructure offers significant computational power,
enabling the analysis of vast datasets (Dandois and Ellis, 2013) and
facilitating timely decision-making in response to environmental changes
(Lechner et al., 2018). Amid this wealth of applications, GEE's role in
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Table 1
Image collections from landsat 5 and landsat 8 on Google Earth Engine for
mangrove cover estimation in the Lower Mekong Region.

No. Year Landsat Data Composite Period

1 1989 Landsat 5 1989-01-01 to 1989-12-31
2 1995 Landsat 5 1995-01-01 to 1995-12-31
3 2000 Landsat 5 2000-01-01 to 2000-12-31
4 2005 Landsat 5 2005-01-01 to 2005-12-31
5 2010 Landsat 5 2010-01-01 to 2010-12-31
6 2015 Landsat 8 2015-01-01 to 2015-12-31
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assessing mangrove forest cover changes is of paramount importance. Its
capacity to process and analyze satellite imagery over extended time-
frames (Xiong et al., 2017) makes it a valuable tool for studying dynamic
ecosystems like mangrove forests. In fact, GEE has been successfully
employed to monitor mangrove deforestation and restoration in regions
such as the Sundarbans in Bangladesh and India (Saha et al., 2020) and
the Caribbean (Caldwell et al., 2019). In addition, GEE facilitates the
integration of data from multiple sources, including remote sensing and
geographic information systems, enabling comprehensive assessments of
mangrove ecosystems (Fuchs et al., 2020).

Utilizing the applications of the GEE, our study aims at assessing the
changes in mangrove forest cover and carbon stocks in the LMR delin-
eating by longitudes 92.2�E to 109�E and latitudes 21.5�N to 5.57�N. The
LMR territories are intersected by the 4900 km of the Mekong River,
culminating in a significant delta before reaching the ocean. The changes
of mangrove forest cover were assessed between 1989 and 2020. Sub-
sequently, the related carbon emissions and sequestration are also
assessed to establish a forest reference emission level or FREL for the
whole LMR. This FREL serves as a benchmark for assessing changes in
carbon emissions resulting from the implementation of activities of
Reducing Emissions from Deforestation and Forest Degradation, plus the
conservation of forest, sustainable management of forests, and
enhancement of forest carbon stocks (REDDþ) in LMR.

Our research fills a scientific gap by providing a comprehensive, data-
driven analysis of mangrove cover changes over three decades in the
LMR between 1989 and 2020. Our study offers a novel approach in
employing GEE for mangrove forest cover monitoring, setting a new
benchmark in the field. The study findings can contribute to our under-
standing of the current state of mangrove cover, which is invaluable for
aiding better-informed decision making in the conservation and resto-
ration of mangrove forests. These important contributions are in line
with multiple Sustainable Development Goals (SDGs) namely, SDG 6
(clean water), 12 (responsible consumption and production), 13 (climate
action) and SDG 14 and 15 (life below water and life on land) (Bimrah
et al., 2022; United Nations, 2022; Sasmito et al., 2023). The mangrove
ecosystem restoration is also aligned with various international and na-
tional commitments and initiatives such as the Bonn Challenge, the New
York Declaration on Forests, the United Nations Decade on Ecosystem
Restoration, and national restoration targets specified in nationally
determined contributions. In addition, our study could contribute to the
implementation of the United Nations Convention to Combat Desertifi-
cation (UNCCD)'s tenure-restoration targets for land degradation
neutrality (UNCCD, 2014), which were adoption by more than 130
countries to halt, and then reverse the future land degradation (UNCCD,
2022). Such global initiatives underscore a widespread commitment to
rejuvenate degraded mangrove ecosystems (FAO, 2023).

2. Literature review

Although the Asian continent is home to approximately 38% of the
global mangrove forests (Thomas et al., 2017), the mangrove forests in
Southeast Asia are diminishing rapidly, with annual loss rates between
3.6% and 8.1% (Hamilton & Casey, 2016). Such loss has particularly
occurred in the LMR. For example, political instability and population
growth have contributed to environmental and economic damage in
Myanmar (Wang et al., 2013). In Cambodia, intensive logging occurred
in the late 1980s during the nation's transition from a socialist state to a
market economy, while Thailand's dependence on Cambodia's forests,
including mangroves increased following its logging ban in 1989 (Le
Billon, 2000). Vietnam also experienced a transition to a more
market-oriented economic system in 1989, leading to unsustainable
shrimp farming practices in the early 1990s that negatively impacted
mangrove forests (De Graaf & Xuan, 1998). Mangrove ecosystems,
renowned for their ability to sequester carbon, were estimated to store
around 937 MgCO2 (1 Megagram CO2 ¼ 1 ton of carbon dioxide) per
hectare (Alongi, 2014). However, the alarming rates of mangrove loss,
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primarily attributed to human activities and, to some extent, natural
disasters (Sathe et al., 2013; Chakravarty et al., 2012; Malik et al., 2017),
have significant environmental consequences. This loss leads to sub-
stantial carbon emissions, with Hamilton et al. (2016) estimating emis-
sions of approximately 70–420 TgCO2 (Teragrams of carbon dioxide ¼ 1
million tons of carbon dioxide) annually between 2000 and 2012 due to
mangrove deforestation. Therefore, understanding the changes in
mangrove cover during these critical periods is essential for enhancing
their protection.

The GEE, in conjunction with Google Cloud, provides a powerful
platform for data accumulation and storage in Google Cloud Storage. A
notable data repository in GEE is the Landsat satellite imagery collection,
which supplies earth surface snapshots with approximately 30 m reso-
lution every fortnight (Landsat Collections in Earth Engine Data Catalog,
2021). The GEE has been increasingly used for mangrove forest and other
environmental monitoring. The innovative platform facilitates the anal-
ysis of long-term environmental changes, influenced by both anthropo-
genic and natural factors (Xie et al., 2019; Jia et al., 2021; Upakankaew
et al., 2022). With its high-resolution satellite imagery and advanced
computing capabilities, GEE offers a comprehensive approach for map-
ping and understanding mangrove forest dynamics (Jia et al., 2021).
Utilized GEE and multi-temporal Landsat data a recent study was con-
ducted to map and monitor mangrove forests in the Sundarbans Reserved
Forest, Bangladesh with high overall accuracy of 90.3% (Rahman &
Deddy, 2021). Another study in the Niger Delta, Nigeria, highlighted
GEE's potential for mapping coastal land cover change, including
mangrove forests, with high accuracy (89.2%) using time series Landsat
data (Ibe et al., 2022). The findings in the studies showcase GEE's ca-
pabilities in providing robust, accurate, and scalable solutions for
mangrove forest monitoring, especially in the Lower Mekong Region.

3. Study methodology

3.1. Data collection

In this study, we exploited the capabilities of Landsat 5 Thematic
Mapper ™ and Landsat 8 Operational Land Imager (OLI) Tier 1 Top of
Reflectance (TOA) imagery, accessible within GEE (Venkatappa et al.,
2019). Due to data unavailability affected by changes of remote sensing
technologies, we used the Landsat 5 to analyze mangrove forests for the
years 1989, 1995, 2000, 2005, and 2010, while Landsat 8 was employed
for 2015 and 2020 (Table 1) along the inclusive of coastal areas
extending 5 km inland from the coastline of the LMR (Fig. 1). This is
because mangrove forests predominantly occur within a 5 km radius
from the coastline (Giri et al., 2011). We delineated a 5 km inland
polygon in the LMR coastline using ArcMap 10.3.1. This delineated
polygon was then imported to the GEE platform through the GEE asset
manager, paving the way for in-depth analysis concentrating on the LMR
coastal areas and the encompassed mangrove forest cover.

3.2. Data preprocessing and processing in Google Earth Engine

Data analysis was carried out through the JavaScript API on the GEE
platform. The platform features a web-based Integrated Development
Environment (IDE), dubbed the Code Editor, which facilitates the



Fig. 1. Geographical locations of the mangrove forests by countries in the Lower Mekong Region.
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crafting and running of scripts for geospatial analysis and workflow
processing (Google Earth Engine, 2021). The data acquisition phase
encompassed the retrieval of Landsat 5 images from 1989 to 2010, and
Landsat 8 imagery for the years 2015–2020. These acquired annual im-
ages were then subjected to further processing stages. Accordingly, a
composite function was initiated utilizing GEE code to refine the images
to median pixel values, while a cloud threshold of 95%was established to
counteract the effects of cloud cover as recommended by Venkatappa
et al. (2019). We used the cloud mask function to eliminate clouds and
shadows. This cloud mask function is a tool developed by the Landsat
Provisional Aquatic Reflectance and the United States Geological Survey
(Landsat Provisional Aquatic Reflectance, 2021; USGS, 2021).

3.3. Application of the classification and Regression Tree algorithm

Previous studies have explored machine learning algorithms and
classification techniques, such as unsupervised, supervised, hybrid,
random forest, support vector machine, and object-oriented
3

classifications on the GEE (Johansen et al., 2015; Mondal et al., 2019).
Based on these studies with high accuracy of the Classification and
Regression Tree (CART) algorithm in mangrove area, the CART was also
employed as the algorithm in our study. It is worth noting that CART
functions as a rule-based classifier within a tree-structured decision space
(Pallara, 1992).

Here, we classified the land into five distinct categories: mangroves,
other vegetation, water bodies, urban areas, and barren land along the
LMR coastlines based on the approach outlined by Giri et al. (2011). The
category of other vegetation encompasses various land cover types such
as grasslands, barren agricultural lands, and croplands. Water bodies
comprise both marine and freshwater sources, including stagnant inland
waters, while urban areas encapsulate human-made structures. In
contrast, barren lands signify the eroded and degraded regions within the
defined study area or buffer zone (Wang et al., 2018).

To facilitate a precise classification, we assigned multiple random
training points to each land cover category (see Supplementary Infor-
mation). A total of 250 training points were identified to maximize
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accuracy for the mangrove forests and were thus chosen for delineating
mangrove areas. Different numbers of training points were assigned to
the remaining categories (refer to Table 2), summing up to 750 points
used throughout the study. These included 200 points for other
Table 2
Data point distribution for model training across land cover types.

Points in GEE Land cover type Training points

Mangrove 250

Other vegetation 200

Water 100

Urban/Built Area 100

Barren Land 100

Total Training points 750
In total (750*7) ¼ 5250

Fig. 2. Methodological framework depicting the flow from

4

vegetation and 100 each for water bodies, urban areas, and barren land.
Supplementary Information elaborates further on the training points
utilized.

For image training using the CART algorithm, the polygon geometry
tools available in GEE were employed. The training points were distinctly
color-coded: red for mangroves, green for other vegetation, blue for
water bodies, yellow for urban areas, and grey for barren land, facili-
tating a vivid and clear classification process.

After the initial training phase on the GEE platform, the mangrove
areas were delineated using the CART algorithm. Accordingly, we un-
dertook stringent accuracy assessments and validation protocols, which
are vital in steering informed decisions in mangrove conservation
(Asner et al., 2010). This accuracy assessment was executed within the
GEE platform, following the computation of the mangrove area.
Furthermore, we instituted data validation steps before the estimation
of carbon stocks and the evaluation of their fluctuations. A graphic
overview of the complete methodology adopted in this study is illus-
trated in Fig. 2.
data acquisition to the estimates of carbon emissions.



Fig. 3. Georeferenced locations of the field data collection sites in Thailand visualized in GEE.

Table 3
Average carbon stock values in five mangrove carbon pools.

Carbon pools CS (MgC ha�1) CS (MgCO2)

AGB 185 678.37
BGB 78.63 288.32
Litter 9.64 35.34
Soil 447.00 1639.00
Deadwood 16.34 59.92
Total average 736.61 2700.95
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3.4. Accuracy assessment and ground truthing

An accuracy assessment was accomplished by utilizing a confusion
matrix on the GEE platform. The overall accuracy percentages calcu-
lated for the years 1989 through 2020 were 88%, 92%, 93%, 88%, 94%,
95%, and 95%, respectively. Kappa coefficients, derived from the
confusion matrices for each year, yielded values of 0.84, 0.89, 0.90,
0.83, 0.92, 0.94, and 0.93. The CART algorithm thus exhibited an
average accuracy of 92.1% for the LMR, with an average kappa coeffi-
cient of 0.89.

To ascertain the accuracy and diminish bias in our assessment,
ground truthing complemented by secondary data was employed.
Ground truthing involved collecting data through a Geographic Pro-
cessing System (GPS) in Thailand at Samut Prakan, Samut Songkran, and
Rayong during early January 2020. These locations were chosen for their
varied geographical characteristics. Recorded GPS data were depicted in
Fig. 3 and subsequently incorporated into ArcMap 10.3.1 to create a
shapefile. This file was then used within GEE to corroborate the
mangrove areas identified via remote sensing. Fig. 3 presents the overlay
of reference points from Samut Songkran on a global dataset obtained
from ArcGIS, validating the consistency of field data with the mangrove
classifications on GEE imagery.

3.5. Calculation of carbon stocks and emissions in mangrove forests

To assess the carbon stocks and emissions from mangrove forests, we
applied equation (1), derived from the sum of various carbon pools
proportionate to mangrove area, following IPCC (2006) guidelines.
5

Carbon stock,

CS(t) ¼ FArea(t) � (CSAGB þ CSBGB þ CSL þ CSD þ CSS) (1)

In Eq. (1), the CS(t) represents the total carbon stock of the forest in
tonnes of carbon per hectare (MgC ha�1), FArea (t) denotes the area of
the mangrove forest, CSAGB represents carbon stored above ground,
CSBGB represents carbon stored below ground, CSL represents the
carbon stock of litter, CSD represents the carbon stock of deadwood,
and CSS represents the carbon stock in the soil per hectare.Where

FArea(t) is Mangrove forest area at time t (in ha)

CSAGB is Aboveground carbon stock (MgC ha�1)

CSBGB is Belowground carbon stock (MgC ha�1)

CSL is Carbon stock in the litter (MgC ha�1)

CSD is Deadwood carbon stock (MgC ha�1)

CSS is Soil carbon stock (MgC ha�1)

We derived carbon stock data from four pools as per Hutchison et al.
(2014), while deadwood estimates were adopted from Suarez et al.,
2019, following the approximation methods of Upakankaew and Shres-
tha (2018). These calculations yield a total carbon stock of 736.6 MgC
ha�1, as depicted in Table 3.

This carbon stock of 736.6 MgC ha�1 is well within the previous
estimates at various countries around the world (Table 4). For
instance, Dao et al. (2022) reported 489.5 MgC ha�1 for Vietnam's
Mekong Delta mangroves and Dung et al. (2016) estimated between
573.5 and 1026.0 MgC ha�1. Thailand's mangroves hold about 596.5
MgC ha�1 according to Chutamas and Chutamas (2019), while Cam-
bodia's figures stand at 494.3 MgC ha�1 as per Sasaki et al. (2014). The
Indo-Pacific mangroves, including the Sundarbans and Micronesia,
show above and below-ground stocks of 1023 MgC ha�1 (Donato et al.,
2011; Woltz et al., 2022). In West Central Africa, mangroves have a
higher mean carbon stock at 799.0 MgC ha�1 with approximately 86%
in the soil. The Asia-Pacific region reports even higher averages at
1094 MgC ha�1. Nevertheless, Kauffman and Bhomia (2017) suggest a
global average of 780 MgC ha�1 for mangroves.



Table 4
Mangrove forest cover in Myanmar, Thailand, Cambodia, and Vietnam
(1989–2020).

Year Myanmar
(ha)

Thailand
(ha)

Cambodia
(ha)

Vietnam
(ha)

Total Area
(ha)

1989 784,685 339,613 83,754 365,608 1,573,660
1995 757,117 366,800 77,648 353,013 1,554,578
2000 488,970 322,427 55,123 277,448 1,143,968
2005 582,126 339,510 87,890 251,983 1,261,509
2010 690,712 475,515 81,266 357,794 1,605,287
2015 1,191,514 681,683 1,45,330 438,585 2,457,112
2020 1,000,080 601,642 117,664 345,078 2,064,464
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To calculate changes in carbon stocks resulting from alterations in
mangrove forest cover, we utilized the following equation:

CE(t) ¼ [CS(t) - CS(t-1)] � (44/12) (2)

Where.
CE(t) is the annual change of carbon stocks measured in terms of

emissions if CS(t) > CS(t-1) or removals if otherwise (MgCO2).
CS(t-1) represents the carbon stock in the previous year (also calcu-

lated using Eq. (1)). By subtracting the previous year's carbon stock from
the current year's carbon stock.

The ratio 44/12 is the molecular weight of CO2 over carbon.

4. Results

4.1. Trends of mangrove cover in the LMR between 1989 and 2020

In the LowerMekong Region (LMR), Myanmar has the largest share of
mangrove coverage, accounting for 48.4% of the total. Historical data
indicates that Myanmar's mangrove cover was 784,685 ha in 1989, but it
decreased to 757,117 ha by 1995 and continued to decline, reaching
488,970 ha by 2000, the period of most significant loss. A recovery was
observed as forest cover increased to 582,126 ha in 2005 but a sub-
stantial rebound was observed with the mangrove cover expanding to
1,000,080 ha in 2020 (Fig. 4). The Ayeyarwady region, a key area for
mangrove conservation in Myanmar, exhibited varying mangrove cover
trends during the period studied.

Thailand had the second-largest mangrove area in the LMR, at 29.2%
of the total. From 1989 to 2020, mangrove cover nearly doubled,
growing from 339,613 ha to 601,642 ha. The lowest coverage was in
2000 at 322,427 ha, but an overall increase was seen, peaking at
681,683 ha in 2015, then slightly decreasing by 2020. Significant loss
periods were between 1995-2000 and 2015–2020. Vietnam accounted
for 16.71% of the LMR's mangroves, with a slight 5.6% decrease from
1989 to 2020, from 365,608 ha to 345,078 ha. The decline continued
until 2005, hitting a low of 251,983 ha, then reversed, reaching 438,585
ha in 2015. Fig. 6 shows the reduction in mangrove forests in southern
Vietnam, notably in Ben Tre and Than Phu, especially between 2005 and
2015. On the other hand, Cambodia had the smallest mangrove area in
the LMR, 5.7% of the total. However, it saw a 40% increase in mangrove
area from 1989 to 2020, from 83,754 ha to 117,664 ha. The area dropped
to 55,123 ha in 2000 but increased until 2005, decreased until 2010, and
peaked at 145,330 ha in 2015 before declining in 2020 (Fig. 5). Major
reductions occurred from 1989 to 2000, 2005–2010, and 2015–2020.

By 2020, the mangrove cover in the LMR had increased by 31.2%
from its 1989 extent, rising from 1,573,660 ha to 2,064,464 ha. The
increase followed an initial decline, aligning with the forest transition
theory, as indicated by the trends in Myanmar, Thailand, and Cambodia
between 1989 and 2015. However, a decrease post-2015 is observable, as
shown in Fig. 6. A closer look from 1989 reveals that mangrove cover in
Myanmar, Thailand, and Cambodia generally trended upwards until
2020, unlike in Vietnam, where a reduction occurred. The timeframe
from 1995 to 2000 experienced the sharpest decline, while the period
from 2010 to 2015 witnessed the most considerable expansion.
6

With a mangrove forest cover of 1,573,712 ha in 1989, the LMR saw a
marginal reduction to 1,554,578 ha by 1995. The downward trend
continued in the following years, with a reversal seen leading to 2015.
Vietnam and Myanmar were notably affected by mangrove deforestation
within the LMR. Figs. 5 and 6 detail the changes in specific mangrove
areas in Myanmar and Vietnam, respectively.

Employing the 30-m resolution satellite imagery to assess the
mangrove extent, Giri et al. (2011) estimated the mangrove forest cover
at 1,015,752 ha in the LMR in 2000. Their estimate is slightly lower than
the estimate by our study, which was estimated 1,143,968 ha in 2000
(see Supplementary Information for details). Fig. 7 showcases this com-
parison: areas pinpointed in our analysis are marked in red, while the
previously recorded data by Giri and colleagues appear in a darker tone.
FAO's assessment for 2000 reported 844,161 ha of mangroves in the LMR
(as per SI-II), a smaller figure than that given by Giri et al. (2011). Our
analysis suggests a larger expanse of mangrove cover. Illustrated in Fig. 4,
our study indicates additional inland mangrove areas not accounted for
in earlier research. While Giri et al. focused largely on coastal and
intertidal zones, our study encompasses inland, upland, and open ocean
regions, which may explain the higher figure for mangrove coverage
estimated in our assessment.

From 1989 to 2020, we found that the annual mangrove growth rates
differed among the LMR countries. Myanmar had an average annual
increase of 0.988%, Thailand experienced a significant 2.5%, Cambodia
followed with 1.3%, and Vietnam displayed a slight rise at 0.18%.
Notably, Thailand had the highest annual increase, ranging between
2.5% and 5.1%. Vietnam, on the other hand, had a consistently low
growth rate over the three decades. These annual fluctuations are
detailed in Table 5, and the underlying reasons for these variations in
growth will be explored in subsequent analysis.

Carbon stock calculations took into account changes in mangrove
area and carbon density. The area was determined using Google Earth
Engine (GEE), and the average carbon density was taken as 736.6 MgC
hâ-1, derived from various studies. The carbon stock calculations for
Myanmar, Thailand, Cambodia, and Vietnam for the years 1989, 1995,
2000, 2005, 2010, 2015, and 2020 are presented in Table 6. For
Myanmar, carbon stocks were estimated at 577.0 TgC, 557.0 TgC, 360.0
TgC, 428.0 TgC, 508.0 TgC, 877.0 TgC, and 736.0 TgC for the respective
years. In Thailand, carbon stocks fluctuated between 250.0 TgC and
443.0 TgC, with per-hectare carbon densities ranging from 675.7 MgC to
757.0 MgC. Cambodia's carbon stocks were projected at 61.6 TgC, 57.2
TgC, 40.6 TgC, 64.7 TgC, 59.9 TgC, 107.0 TgC, and 86.7 TgC for the
specified years. For Vietnam, estimated carbon stocks for these years
were 269.0 TgC, 260.0 TgC, 204.0 TgC, 186.0 TgC, 264.0 TgC, 323.0
TgC, and 254.0 TgC.

4.2. Carbon emissions or removals due to mangrove forest cover changes in
the LMR

The results of this study provide insights into the yearly carbon
emissions from mangrove ecosystems across the LMR countries, with
details shown in Table 7. Notably, negative figures in the table represent
carbon sequestration by mangroves, indicating their role as carbon sinks
rather than sources of emissions. In 2020, the mangrove forests in all four
LMR countries collectively acted as carbon sinks.

From 2015 to 2020, every country in the LMR succeeded in achieving
carbon sequestration within their mangrove forests. In the earlier period
of 2010–2015, however, Myanmar and Thailand exhibited carbon
emissions from mangrove ecosystems. It is essential to note that this
study's national scale approach encountered challenges in pinpointing
specific site-level variations. The period of 1995–2000, characterized by
an increase in mangrove area, coincided with notable carbon seques-
tration. Mangroves are recognized for their high carbon storage capacity,
with 1 ha of mangrove forest sequestering up to four times more carbon
than many of the world's tropical forests, as reported by Donato et al.
(2011). Among the countries analyzed, Myanmar's mangrove forests held



Fig. 4. Changes of mangrove forest area in Ayeyarwady, Myanmar between 1989 and 2020.
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the highest potential for carbon stock. While the LMR's average carbon
sequestration rate was lower than the global average, it still exceeded the
rates found in many other regions and countries.

5. Discussions

5.1. GEE, accuracy, and mangroves

Using the Google Earth Engine (GEE), this study achieved a note-
worthy average accuracy rate of 92.1% in the generated image of the
LMR using the CART method, characterized by a respectable kappa co-
efficient average of 0.89. Several parallel studies using GEE for mangrove
assessment have cited similar accuracy levels, substantiating the reli-
ability of this tool in scientific endeavors. For example, the mangrove
mapping in Brazil from 1985 to 2018 noted an accuracy of 87% (Diniz
et al., 2019), while in Cambodia the vegetation type threshold values
were delineated with an 85% accuracy rate (Venkatappa et al., 2019).
Other studies in West Africa and Sierra Leone documented accuracies of
90% and 95% respectively (Mondal et al., 2017, 2019). Notably, a recent
7

study focusing on the northern coast of Vietnam depicted a remarkable
accuracy of 92% (Vu et al., 2022). These efforts rely significantly on
freely accessible data and potent algorithms bolstering effective super-
vision and delineation of forest cover transformations and Sustainable
Development Goals indicators (Mondal et al., 2019; FAO, 2020).

Utilizing the CART algorithm in our study rendered a more precise
output compared to secondary data available for the year 2000. Despite
the high accuracy achieved, a few errors in area estimation during the
GEE training phase were inevitable. These errors predominantly
occurred in the classification of year-round and stationary water bodies,
which were occasionally misconstrued as evergreen vegetation instead of
mangroves. A minor decrement in overall accuracy was observed due to
the visibility of other vegetation in shallow water areas. Nevertheless,
these minor setbacks did not significantly affect the mangrove forest area
estimation as an optimized number of training points were selected after
numerous trial sessions, with 250 points proving most effective in
achieving highest accuracy during training (SI-II). Accurate mangrove
area estimation continues to be a complex endeavor due to intrinsic in-
tricacies (Zhao & Qin, 2021). Our study, however, manages to fill the



Fig. 5. Change of mangrove forest area in Southern Vietnam between 1989 and 2020.

M. Bajaj et al. Innovation and Green Development 3 (2024) 100140
data void concerning mangrove areas over several years, employing
robust tools and apt methodologies, although further refinements are
needed to curtail mapping errors (Powell et al., 2013).

Comparative studies, like that of Long and Giri (2011), leveraged
Landsat imagery to assess mangrove cover in the Philippines, reporting
an area of 256,185 ha in the year 2000, a figure notably higher than the
246,700 ha documented by the Food and Agriculture Organization
(FAO) for the same year. The Department of Environment and Natural
8

Resources (DENR) stated an area close to the FAO's, at 247,362 ha.
These variations primarily stem from the diverging methodologies and
technologies employed in each study. The FAO assimilated both pub-
lished and unpublished data, while the DENR utilized Landsat imagery,
occasionally leading to broader misclassifications (Long & Giri, 2011).
Hence, for more localized analysis or inter-regional comparisons, field
research remains an indispensable approach for obtaining accurate
data.



Fig. 6. Changes of mangrove forest area by countries in the LMR between 1989 and 2020.

Fig. 7. Comparative analysis of CART-classified mangrove area (2000) and the data from Giri et al. (2011).
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This study addresses the previous gap in lack of a standard method for
mangrove estimation. The study will help governments in preparation of
conservation plans and strategies for rehabilitation and taking proper
actions for the sustainable management of mangroves in the LMR. To
mitigate climate change, managers and policymakers need precise in-
formation on the status and spatial distribution of carbon sources and
sinks. Without understanding the changes in mangrove forest cover, it
9

would not be possible to provide effective policy interventions for
reducing mangrove loss or reversing the trends.

5.2. Variations of carbon stocks in mangrove forests

The accuracy of mangrove cover estimations in our study is subject
to potential errors from algorithm inaccuracies and classifier errors.



Table 5
Annual change rates of Mangrove Forests in LMR for every 5-year interval (in %).

Period Myanmar Thailand Cambodia Vietnam

1989–2020 0.88 2.5 1.3 0.18
1995–2020 1.28 2.6 2.0 �0.08
2000–2020 5.2 4.3 5.6 1.2
2005–2020 4.7 5.1 2.3 2.4
2010–2020 4.4 2.7 4.5 �0.35
2015–2020 �5.6 �2.3 �3.8 �4.2

Negative means loss of mangroves.

Table 6
Mangrove forest carbon stock (CS) by year in Myanmar, Thailand, Cambodia,
and Vietnam (in TgC).

Year Myanmar Thailand Cambodia Vietnam

1989 577.9 250.2 61.7 269.3
1995 557.7 270.2 57.1 260
2000 360.2 237.5 40.6 204.4
2005 428.9 250 64.7 185.6
2010 508.8 350.3 59.9 263.6
2015 877.7 502.2 107 323.3
2020 736.6 443.2 86.7 254.2

Table 7
Annual carbon emissions and Sequestration from Mangrove Area Changes in
Lower Mekong Countries (TgCO2).

Internals Myanmar Thailand Cambodia Vietnam

1989–1995 �14.9 14.04 �3.8 �6.2
1995–2000 �144.9 �23.4 �12.6 �40.3
2000–2005 50.8 9.9 17.4 �13.9
2005–2010 58.5 73.72 �3.9 57.8
2010–2015 270.8 111 34 43.5
2015–2020 �103.7 �43.2 �15.2 �50

Minus sign (�) refers to carbon sequestration or removals.
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Complications such as the mixed pixel effect and tidal influence pose
additional challenges to satellite-based mapping accuracy of the
mangroves (Rocchini et al., 2013; Toosi et al., 2019; Baloloy et al.,
2020; Gandhi & Jones, 2019). Furthermore, the transition in satellite
data from Landsat 5 to Landsat 8 may have also influenced trend
consistency, particularly during 2010–2015. On the other hands, car-
bon stocks of mangrove forests vary significantly from one country to
another. Mangrove forests in the tropics hold an average of 1023 MgC
ha�1, about 49–98% of which are found in the soil organic carbon
(Donato et al., 2011). Elsewhere in the tropics, carbon stocks in
mangroves were reported at 212 ha-1 in Africa, 477.0 in Latin
America, 400 MgC in Australia, 446 MgC in Malaysia (Alongi, 2002),
540 MgC in Micronesia (Ellison, 2000), 611 MgC in Indonesia (Simard
et al., 2008), 486 MgC in Vietnam (Nguyen et al., 2018), and 448 MgC
in Thailand (Rattanachot & Prawirum, 2020). To provide the most
accurate representation of carbon stocks, this study integrated field
data and remote sensing techniques to gauge mangrove carbon stocks,
recognizing variations in carbon biomass due to geographical location,
forest maturity, and species diversity. The average aboveground
biomass (AGB) was 185 MgC ha�1, with belowground biomass (BGB)
at 78.63 MgC ha�1 (Hutchison et al., 2014). Carbon pool in the litters
contributed 9.64 t ha�1, and soil carbon was estimated at 447 MgC
ha-1. This research applied both global and local valuation methods,
amalgamating data from various studies for a comprehensive evalua-
tion so as to address the variations of the data sources and availability,.
A basic correlation analysis revealed a positive relationship between
forest cover and carbon reduction, further supporting the significance
of mangrove conservation in carbon sequestration. The coefficient of
determination (R-squared) was found to be 0.62, indicating a strong
association between the two variables.
10
Our study introduces a correlation analysis between forest cover and
carbon reduction, highlighting the link betweenmangrove cover changes
and carbon emissions. This analysis is crucial in understanding the
environmental impact of mangrove deforestation and the significance of
conservation efforts. Despite uncertainties in biomass estimation and
carbon accounting, our approach underscores the importance of localized
data and focused studies for accurate understanding of mangrove alter-
ations and deforestation across diverse regions (Baker et al., 2004; Cas-
tillo et al., 2017; FAO, 2020; Sasaki et al., 2016).

6. Conclusion

In this study, we have assessed the dynamics of mangrove cover and
associated carbon stocks in the Lower Mekong Region (LMR) across three
decades. By employing the Classification and Regression Tree (CART)
algorithm within the Google Earth Engine (GEE) framework and
leveraging 30-m resolution Landsat Top of Atmosphere (TOA) imagery,
we achieved an exceptional accuracy rate of 92.1% and a kappa coeffi-
cient of 0.89 in mapping mangroves. Our findings indicate significant
mangrove losses in Myanmar, Thailand, Cambodia, and Vietnam, with
the most notable depletions occurring during 1995–2000 and
2015–2020, despite a slight resurgence observed from 2010 to 2015.
These patterns are reflective of a global trend, suggesting a shared tra-
jectory of mangrove cover changes on a worldwide scale.

Crucially, our research illuminates the capacity for carbon capture by
LMR mangroves, which exceeds that of many other forest types. In light
of the commitments made by parties of the Paris Climate Agreement of
the United Nations Convention on Climate Change, our insights are
invaluable for securing financial support through the United Nations'
REDD þ program. Such funding would bolster mangrove conservation
efforts by monetizing the reduction of carbon emissions or the
enhancement of carbon stocks. Yet, there remains a critical need for in-
depth, localized analysis to identify the distinct factors driving
mangrove cover changes. To develop effective conservation strategies,
understanding the nuances behind these drivers at the local level is
essential. Therefore, we call for further research aimed at dissecting these
factors with increased precision, enabling a comprehensive understand-
ing of the elements that affect conservation policies. Through such
focused investigations, we can enhance the strategic effectiveness of
mangrove conservation and ensure the longevity and health of these vital
ecosystems.
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