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Abstract
Mangroves are one of theworld’smost threatened ecosystems, andMyanmar is regarded as the
currentmangrove deforestation hotspot globally. Here, we usemulti-sensor satellite data and
Intensity Analysis to quantify and explain patterns of net and grossmangrove cover change (loss, gain,
persistence) for the 1996–2016 period across all ofMyanmar.Net nationalmangrove cover declined
by 52%over 20 years, with annual net loss rates of 3.60%–3.87%.Grossmangrove deforestationwas
more profound: 63%of the 1996mangrove extent had been temporarily or permanently converted by
2016. Rice, oil palm, and rubber expansion accounted formost conversion; however, our analysis
revealed targeted systematic transitions ofmangroves towater (presumably aquaculture) and built-up
areas indicated emerging threats formangroves from those land uses. Restoration programmes
facilitatedmangrove gains and represent a critical area for investment alongside protection. This study
demonstrates the importance ofmulti-sensor satellite data for national-levelmangrove change
assessments, alongwith gross land cover transition analyses to assess landscape dynamics as well as
prioritise threats and interventions in an effort to develop holistic strategies that aim to conserve
important habitats.

1. Introduction

Mangroves account for only 0.7% of the Earth’s
tropical forest area (Giri et al 2011), but are among the
world’s most productive and important ecosystems
that provide a wide range of ecological and socio-
economic benefits to human society (Alongi 2002,
Barbier 2007). Mangroves have long been recognised
as one of the world’s most threatened tropical biomes
(Field et al 1998, Polidoro et al 2010), with previous
research estimating at least 35% mangrove area loss
between 1980 and 2000 (Valiela et al 2001). Southeast
Asia has the highest mangrove biodiversity globally
(Polidoro et al 2010) and the highest proportion of
global mangrove extent (32.2%–33.8%) (Thomas et al
2017, Bunting et al 2018), of which have declined at an
average rate of 0.18% annually between 2000 and 2012

based on recent estimates, with replacement land uses
(e.g. rice, oil palm, and aquaculture) varying across
countries (Richards and Friess 2015).

Accurate estimates of land cover and change
dynamics are of paramount importance to provide a
robust foundation to inform management and con-
servation strategies, and Myanmar has been a focal
area of this advancement given its expansive man-
groves, high societal dependence on them, and the
expected intensification of pressures to convert them
over the next decade (Webb et al 2012, Lim et al 2017,
Prescott et al 2017). A recent and revised Landsat-
derived estimate of mangrove cover and change for
Myanmar highlighted a growing mangrove deforesta-
tion crisis, and demonstrated the need to develop
ground-up datasets and avoid sub-setting global data-
sets for national-level mangrove estimates (Estoque
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et al 2018). Other studies have demonstrated the
importance of reporting gross land cover statistics
when evaluating change dynamics, including man-
groves (Thomas et al 2017, Estoque et al 2018, Gaw
et al 2018, De Alban et al 2019). This is because gross
land cover change estimates provide essential infor-
mation on transitions among land cover classes una-
vailable through net change studies, leading to a more
robust analysis of the drivers of land cover change
(Pontius et al 2004, Aldwaik and Pontius 2012), which
is especially important for relatively dynamic man-
grove communities since they are amenable to rapid
deforestation (loss) but can also rapidly regenerate
(gain) when biophysical conditions are appropriate
(Lewis 2005, Loon et al 2016).

Here, we report improved estimates for mangrove
cover and change for all of Myanmar over a 20-year
period (1996–2016; subdivided into two time-inter-
vals, where I1 is 1996–2007 and I2 is 2007–2016,
which were defined by the availability of satellite ima-
gery). Our estimates incorporate multi-sensor satellite
data to improve the detection of various land cover
types, especially oil palm and rubber plantations in
Myanmar (see De Alban et al 2018), thereby allowing
us to quantify gross land cover transitions, and parti-
cularly derive spatially explicit estimates of mangrove
cover transitions. We report that mangroves were
more expansive and experienced significantly faster
rates of loss than previously recognised, indicating a
major deforestation crisis.We use Intensity Analysis to
determine linkages between patterns and processes of
mangrove change by identifying systematic transi-
tions, which identified emerging proximate causes.
We supplement this with an assessment of underlying
drivers of mangrove cover change through extensive
literature review andfield observations.

2.Methods

2.1.Data
Wemapped land cover for the entire of Myanmar and
then analysed mangrove cover change (covering six
coastal sub-national regions/states) over a 20-year
period at three time-points (i.e. 1996, 2007, 2016). The
analysis combined Landsat and L-band Synthetic
Aperture Radar (SAR) data to take advantage of the
benefits that the synergy of these datasets offer, such as
for monitoring land cover change and threats to
biodiversity (De Alban et al 2018, Schulte to Bühne
and Pettorelli 2018). For optical data, we used Land-
sat-5 Thematic Mapper (TM; for 1996 and 2007) and
Landsat-8 Operational Land Imager (OLI; for 2016)
30 m calibrated top-of-atmosphere reflectance pro-
ducts. For SAR data, we used Japan Earth Resources
Satellite (JERS-1 SAR for 1996) and the Advanced
Land Observing Satellite Phased Array L-band Synth-
etic Aperture Radar (ALOS/PALSAR-1 for 2007 and
ALOS-2/PALSAR-2 for 2016) 25 m mosaic data. In

addition, we used the 30 m Shuttle Radar Topography
Mission (SRTM) digital elevation model (Farr et al
2007) in our image data stacks as ancillary data to
further improve discrimination of land cover types
and classification accuracies. Landsat, PALSAR, and
SRTM were accessed through the data catalogue of
Google Earth Engine (GEE; https://earthengine.
google.com) (Gorelick et al 2017), while the JERS-1
mosaics were downloaded from the Japan Aerospace
Exploration Agency’s ALOS Research and Application
Project (http://eorc.jaxa.jp/ALOS/en/palsar_fnf/
fnf_index.htm), which were then uploaded as image
assets inGEE.

We used reference land cover data from three
sources: ground-truth information collected in the
field, crowdsourcing platforms, and from visual inter-
pretation of historical high-resolution Google Earth
imagery using the Open Foris Collect Earth system
(http://openforis.org/tools/collect-earth.html) (Bey
et al 2016). We defined our land cover classification
scheme (table S1.1 in SM 1.3 is available online at
stacks.iop.org/ERL/15/034034/mmedia) from these
sources, from which we then conducted a land cover
assessment to delineate regions-of-interest (ROI)
polygons for training and testing the classification
algorithm.

2.2. Land cover classification and change analysis
Our overall workflow consisted of five stages: image
pre-processing, delineation of ROI, image classifica-
tion, accuracy assessment, and change analysis
(SM1.1).

The Landsat and L-band SAR images were pre-
processed using the GEE platform. For Landsat data,
we generated the best-available-pixel Landsat image
composites (adopting the image compositing script in
De Alban et al 2018) for each of the three time-points,
which extracted the best available observations from
the median of multiple Landsat images within a two-
year period (e.g. the 1996 image composite was drawn
from Landsat images from 1996 to 1997). In addition
to the standard reflectance bands (i.e. visible, near-
infrared, thermal, shortwave-infrared), we calculated
six indices including the Enhanced Built-up and Bare-
ness Index, Enhanced Vegetation Index, Land Surface
Water Index, Normalised Difference Tillage Index,
Normalised Difference Vegetation Index, and Soil-
Adjusted Total Vegetation Index (SM 1.2). For the
L-band SAR data, using only the HH-polarisation
channel, we first applied the Refined Lee filter to
reduce the effects of speckle apparent in raw SAR ima-
gery (Lee et al 1994), and then converted the filtered
images to normalised radar cross-sections (SM 1.2).
We then resampled the SAR images to 30 m spatial
resolution to match the Landsat and DEM layers.
Finally, we derived eight second-order texture mea-
sures (i.e. grey-level co-occurrence matrices) includ-
ing angular second moment, contrast, correlation,
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dissimilarity, entropy, inverse difference moment,
mean, and variance (Haralick et al 1973, Conners et al
1984).

For delineating ROIs in Collect Earth, we first
organised all reference land cover data points, and
from this combined collection of data points we subse-
quently generated one-hectare square ROI polygons.
We then assessed the land cover type (based on table
S1.1) of each ROI polygon for each of the three time-
points both using a pre-designed land cover survey
form to streamline the land cover assessment process,
and a land cover interpretation key, which consisted of
snapshot images of different land cover types and their
corresponding time-series spectral plots, to guide our
visual land cover assessment of each individual poly-
gonwithin theCollect Earth system (SM1.3).

For image classification in GEE, we first created
image stacks at each time-point consisting of 13 Land-
sat bands/indices, nine SAR channel/textures, and
one elevation layer, totalling 23 image layers. We clip-
ped all layers of the final image stacks using a bounding
box (91°–102° E longitude; 8°–30° N latitude) and
masked out pixels beyond a 5 km buffer from the
coastline; the reference land cover data were also col-
lected across the extent of this bounding box. We then
partitioned all the ROIs into training and testing poly-
gons (table S1.2 in SM1.3), and after whichwe selected
a subset of all pixels within each of the training and
testing polygons as training and testing pixels, respec-
tively (table S1.3 in SM 1.4). We then employed the
Random Forest machine learning classifier (Brei-
man 2001) to implement supervised land cover classi-
fication using the selected training pixels and image
stacks corresponding to each of the three time-points.

For accuracy assessments, we used two indepen-
dent approaches. First, we followed the good practice
recommendations for assessing the accuracies of land
cover and change maps (Olofsson et al 2014) (SM 1.5).
We used the Area Estimation & Accuracy Assessment
(AREA2) in GEE, which provides the tools for design-
ing sampling strategies and calculating accuracy esti-
mates with confidence intervals (https://area2.
readthedocs.io/en/latest/index.html) (Olofsson et al
2014), complemented by manual calculations. We
note here that we manually calculated the accuracy
assessments for both land cover maps and mangrove
change maps since AREA2 implemented a rounding
up of values in the error matrices and did not calculate
confidence intervals for producer’s accuracies. Impor-
tantly, the manually calculated accuracy assessments
corroborated the accuracies estimated from AREA2

tool, with very minor differences observed in the
reported standard errors. We adopted a stratified ran-
dom sampling design for both the classified land cover
maps per time-point, and the mangrove change maps
per time-interval (Cochran 1977, Olofsson et al 2014)
(SM 1.5). We evaluated the accuracies of the classified
land covermaps per time-point using the selected test-
ing pixels based on a proportional allocation sampling

strategy and calculated the standard accuracy assess-
mentmetrics (i.e. errormatrix, overall accuracy, user’s
and producer’s accuracies) (SM 1.5.a). We also eval-
uated the accuracies of themangrove changemaps per
time-interval, specifically for 18 transitions (i.e. one
class of mangrove persistence, eight classes of man-
grove loss, eight classes of mangrove gain, and one
class of non-mangrove persistence), using testing pix-
els based on an equal allocation sampling strategy and
calculated the same standard accuracy assessment
metrics (SM 1.5.b). For the accuracy assessment of
mangrove change maps, given that mangroves were a
‘rare’ category in our land cover maps (only 2% of
Myanmar’s total land area), mangrove change transi-
tions, which comprised a subset of mangrove cover
were even ‘rarer’ in the mangrove change maps.
Hence, we decided to adopt an equal allocation sam-
pling approach to avoid under-representation of ‘rare’
mangrove transitions for accuracy assessments (see
SM1.5.b and table S1.5). Second, we used the quantifi-
cation of hypothetical map errors from the Intensity
Analysis framework (Aldwaik and Pontius 2012, 2013)
for evaluating the accuracies of change maps (i.e. to
gauge whether the changes are due to real change or
map error) (SM1.6.b).

For change analysis, we generated transition
matrices by calculating the area of all land cover transi-
tions within each of the six coastal sub-national
administrative units (states/regions) of Myanmar per
time-interval, and subsequently analysed both net and
gross land cover change (SM 1.6). For net land cover
change, we calculated the total areal extent of man-
grove cover per time-point for each sub-national unit,
and then subsequently calculated net area ofmangrove
cover change again for each sub-national unit per
time-interval. Annual rates of mangrove cover change
per sub-national administrative unit were then calcu-
lated (using equation (7) in Puyravaud 2003) (SM 1.6.
a). For gross land cover change, we quantified gross
mangrove persistence (or the area of unchanged man-
grove pixels), gross mangrove loss, and gross man-
grove gain. By definition, a transition matrix for a
given time-interval presents gross persistence (diag-
onals), gross gains and losses (off-diagonals), and net
extents (row and column totals) for all land cover clas-
ses.We note here that wewere unable, however, to cal-
culate adjusted area estimates as recommended by
Olofsson et al (2014) for the following reasons. First,
our accuracy assessments were based on both image
and reference datasets that encompassed the larger
extent of the bounding box, and not just withinMyan-
mar’s coastal sub-national mangrove regions/states;
hence, making the area adjustment applicable only for
adjusting the area proportions in that larger extent.
Second, we were also limited by practical considera-
tions since calculating adjusted areas would necessi-
tate accuracy assessments for each of the six coastal
regions/states per time-point. Finally, since we imple-
mented an equal allocation sampling strategy for
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assessing the accuracy of the mangrove change maps,
the trade-off according to Olofsson et al (2014) was
that the use of an equal allocation strategy ‘is not opti-
mised for estimating area’ (see SM2.3).

To analyse the processes associated withmangrove
cover change, transitionmatrices were analysedwithin
the Intensity Analysis framework using both the inten-
sity.analysis (Pontius and Khallaghi 2019) and raster
(Hijmans et al 2019) packages in R v.3.4 (https://r-
project.org) (R Core Team 2016) and a Microsoft
Excel Macro spreadsheet (https://sites.google.com/

site/intensityanalysis) (Aldwaik and Pontius 2012)
(SM 1.7). Intensity Analysis has been extensively
applied to detect systematic transitions and dominant
signals of land change, thus providing a basis for iden-
tifying the proximate causes and underlying drivers of
change (Pontius et al 2004, Braimoh 2006, Aldwaik
and Pontius 2012, Huang et al 2012, Teixeira et al
2014, De Alban et al 2019). Systematic transitions are a
two-sided land cover change relationship, and can be
targeted or avoided in nature (Aldwaik and Pon-
tius 2012). For a targeted systematic mangrove loss
transition, the loss of mangrove targets a destination
land cover type, and reciprocally that land cover type
targets mangrove for its gain. For a targeted systematic
mangrove gain transition, the gain of mangrove tar-
gets a particular source land cover type, and the loss of
that source targets the gain of mangrove. For an avoi-
ded systematic transition, the opposite occurs: the loss
of mangrove avoids a particular destination land cover
type (and vice versa), and the gain of mangrove avoids
a particular source land cover type (and vice versa).
Using this framework, proximate causes of mangrove
cover change are destination and source land cover
types that are associated with (a) the largest areas of
mangrove cover change, or (b) systematic transitions.
We explored the underlying drivers ofmangrove cover
change at the relevant international/national/sub-
national scales using available literature and field
observations (especiallyMMT).

All map figures were designed in QGIS v.2.18
(https://qgis.org/en/site/) (QGIS Development
Team 2018), and all visualisation plots were con-
structed in R, mainly using the tidyverse (Wickham
and RStudio 2017), plyr (Wickham 2016), readxl
(Wickham et al 2019), and egg (Auguie 2018) packages.

3. Results

3.1. Accuracy assessments
High overall accuracies and low uncertainties were
obtained for the land cover classification maps
(85.6%–95.6%; table S2.3). These accuracies alignwith
previous studies showing improved detection and
discrimination of various land cover types (e.g. oil
palm, rubber, agroforests) using multi-sensor data
over optical satellite data only (Torbick et al 2016, De
Alban et al 2018, Schulte to Bühne and Pettorelli 2018,

Yang et al 2018), and lend high confidence to our
estimates. High overall accuracies and low uncertain-
ties were similarly obtained for the mangrove change
maps (94.4%–97.1% for detailed transitions, table
S2.8; 95.2%–97.4% for aggregated transitions, table
S2.11); however, low user’s and producer’s accuracies
were obtained for many loss and gain transitions,
except mangrove and non-mangrove persistence (SM
2.2.a and SM 2.2.b). Hence, for the subsequent change
analysis, we relied on the estimation of hypothesised
errors from the Intensity Analysis framework, which
provided an independent accuracy assessment of the
mangrove change maps (SM 2.5.c). Intensity Analysis
allowed the identification of systematic mangrove
transitions, and the evaluation of non-systematic
mangrove change transitions that were due to real
changes and notmap errors (SM2.5.c).

3.2.Mangrove cover and proximate causes of change
Across all six states/regions and collectively, our
estimates indicate (1) a greater mangrove extent
historically, and (2) faster deforestation rates, than
previous studies.We estimated a total of 13 233 km2 of
mangroves across Myanmar in 1996, with more than
90% occurring in the regions/states of Ayeyarwady,
Rakhine, and Tanintharyi (figure 1; table 1). Total net
mangrove cover declined by 52% over 20 years, from
13 233 km2 in 1996 to 8907 km2 in 2007 to 6287 km2

in 2016. National netmangrove loss was 65%higher in
I1 than I2 (4326 km2 versus 2621 km2, respectively).
Regions/states with low mangrove cover extents
(Bago, Mon, Yangon) fared poorly, with each admin-
istrative unit losing more than 80% of their 1996
extent.

Rice paddy expansion was the most important
proximate cause of mangrove loss over the two time-
intervals (2962 km2 in I1 and 2439 km2 in I2; i.e. 47%
and 68% of gross mangrove losses, respectively)
(figure 2). Oil palm expansion accounted for 1261 km2

(20%) in I1 and 530 km2 (15%) in I2 of gross man-
grove losses, with regions of oil palm conversion in
Tanintharyi and Ayeyarwady (figures 3–4; tables S2.12
and S2.16 in SM1.3). Rubber and shrub/orchard con-
sisted a total of 395 km2 (6%) and 875 km2 (14%) of
total gross mangrove loss in I1. Water body (pre-
sumably aquaculture, at least partially) was a minor
contributor to total mangrove conversion in both
time-intervals (figure 2).

Transition-level Intensity Analysis revealed 18 (I1)
and 14 (I2) targeted systematic mangrove loss transi-
tions (table 2). Out of 12 possible transition occur-
rences (6 regions/states × 2 time-intervals) for each
mangrove loss type (e.g. MNG-WTR, MNG-OPM,
etc), targeted systematic mangrove losses occurred
most frequently for oil palm plantations (11 occur-
rences), water bodies (7), and built-up areas (5). This
means that although the total area of mangrove con-
version into oil palm, water bodies, and built-up areas
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accounted for only 25% and 26% of total mangrove
losses in I1 and I2, respectively, the gains by those des-
tination land cover types were dependent on man-
grove conversion. In contrast, rice paddies
systematically targeted mangrove loss in only four
occurrences for both time-intervals (despite account-
ing for 47% and 68%of totalmangrove losses in I1 and
I2, respectively), indicating that rice paddy gained
from a wide range of land cover types other thanman-
groves (i.e. the relationship was not reciprocal). The
most common avoided systematic transition for man-
grove loss was into forest (9 occurrences), followed by
bare ground (5) and shrub/orchard (3) (table 2),

which means that mangrove losses were not into these
destination land cover classes. Thus, while the main
proximate causes (based on total area converted) of
mangrove loss inMyanmar were the expansion of rice,
oil palm (also systematically transitioning), and rub-
ber, systematic transitions also implicated aquaculture
and urban expansion as latent proximate causes.

Total gross mangrove gains nationally were 2004
km2 and 967 km2 in I1 and I2, respectively. Mangrove
gains were largely attributed to reversion from rice
paddies, constituting 75% (1493 km2) and 70% (674
km2) of total mangrove gains in I1 and I2, respectively
(figure 2). However, the transition was not systematic

Figure 1.Grossmangrove change over three time-periods (1996, 2007, 2016) in selected sites (orange points)within each of the
coastal regions/states inMyanmar, specifically (a)AyeyarwadyRegion, (b)Rakhine State, (c)Tanintharyi Region, (d)BagoRegion, (e)
MonState, and (f)YangonRegion.

Table 1.Total extent ofmangrove cover in 1996, 2007, and 2016 for each coastal region/state inMyanmar, including their net area
mangrove cover change and calculated annual rates ofmangrove cover change for each time-interval (1996–2007 and 2007–2016).

Total extent Net area change Annual rate of changea

1996 2007 2016
1996–2007 2007–2016 1996–2007 2007–2016

Region / State km2 % km2 % km2 % km2 km2 % %

Ayeyarwady 4289 32 3315 37 2004 32 −974 −1311 −2.34% −5.59%

Bago 237 2 173 2 19 0 −64 −154 −2.86% −24.73%

Mon 849 6 211 2 106 2 −637 −105 −12.63% −7.67%

Rakhine 3443 26 1780 20 1309 21 −1663 −472 −6.00% −3.42%

Tanintharyi 4212 32 3285 37 2813 45 −927 −472 −2.26% −1.72%

Yangon 203 2 143 2 37 1 −60 −106 −3.18% −15.10%

Total 13 233 100 8907 100 6287 100 −4326 −2621 −3.60% −3.87%

a Shows calculated annual rates of change using equation (7) in Puyravaud (2003).
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as rice paddy transitioned into other non-mangrove
destination land cover types. Rather, the most com-
mon targeted systematic mangrove gains were from
water bodies (8 occurrences), oil palm (5), and bare
ground (5) (table 2). The most frequent avoided sys-
tematic transitions for mangrove gain were from for-
est (11 occurrences) and rubber (10), with shrub/
orchard (5) a distant third. Mangrove reforestation
was the main proximate cause of the identified sys-
tematic transitions associated with mangrove gains.
Restoration programmes occurred in abandoned agri-
cultural land, such as rice paddies and aquaculture
ponds in Ayeyarwady and Rakhine (figures 4 and 5)
(Maung 2012, Aung et al 2013, Zöckler et al 2013,
Veettil et al 2018).

Mangrove persistence, defined as area that remain
unchanged during a time-interval, was 6902 km2 in I1
(52% of 1996 area) and 5321 km2 in I2 (60% of 2007
area). When evaluated over the entire 20-year period,
persistence was only 4867 km2 (37% of 1996 area),
whichmeans that 63% ofMyanmar’s mangroves were
converted to another land cover type since 1996. The
primary proximate cause of mangrove persistence was
protection through mangrove reserves, particularly
theMeinMaHla KyunWildlife Reserve (~137 km2) in
Ayeyarwady Delta, given the protection it afforded
over mangroves (figure 4) (Webb et al 2014). A second
proximate cause is accessibility: since gross change
maps clearly demonstrate the nature of mangrove
deforestation as occurring in themost accessible areas,
regions that are less accessible contribute to mangrove
persistence (figure 1).

4.Discussion

4.1. Underlying drivers ofmangrove cover change
Underlying the proximate causes of mangrove loss are
drivers unique to Myanmar. Rice expansion is small-
holder-driven to enhance livelihoods and employ-
ment (Okamoto 2007, Matsuda 2009, Stokke et al
2018); interventions dating back to the 1980s include
capital intensification, development of irrigation
infrastructure, agriculturalmechanisation, crop diver-
sification, and improvement of agricultural manage-
ment practices; and market liberalisation and reforms
in 2003 further incentivised rice expansion (Oka-
moto 2007, Matsuda 2009, Webb et al 2014, Torbick
et al 2017). Mangrove conversion to oil palm in
Myanmar (Richards and Friess 2015), in contrast, was
driven by large-scale agribusiness concessions, parti-
cularly targeting Tanintharyi (Connette et al 2016), to
meet domestic and industrial demands for palm oil
and achieve self-sufficiency in edible oils (Donald et al
2015). Rubber plantations in Myanmar increased by
140% in I1, such as in Mon and Tanintharyi where
smallholder plantations were prevalent, as a result of
the government’s introduction of market liberalisa-
tion measures and the rise of international rubber
prices (Woods 2012, Vagneron et al 2017). Rubber
plantations are expected to further expand given the
Myanmar government’s plans to increase rubber acre-
age and production capacity, as well as the availability
of suitable vacant land area in the rubber-growing
regions (Vagneron et al 2017). The systematic transi-
tions of mangrove losses/gains to/from water bodies

Figure 2.Areal extent of land cover categories towhichmangroves lose to and gain from in each time-interval across all the six
mangrove sub-national units inMyanmar.
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suggest a potentially burgeoning threat of aquaculture
development in all sub-national units, previously only
speculated on by previous studies in Myanmar
(Oo 2002, Giri et al 2008, Maung 2012, Zöckler et al
2013, Richards and Friess 2015, Gaw et al 2018, Veettil
et al 2018). Expansion of aquaculture began in the late
1990s (Maung 2012) and although the total area
converted remains low, future expansion is expected
owing to increased international opportunities
afforded by access to internationalmarkets (Webb et al

2014). That said, we acknowledge that given the
aggregate nature of the land cover classification, we
cannot unequivocally state that all the water body
pixels represent aquaculture as a portion of those
pixels could potentially beflooded rice paddies.

Other underlying drivers of mangrove loss transi-
tions include weak law enforcement, resulting from
the lack of sufficient funding and training across the
country (Rao et al 2002). For example, illegal
encroachment converted 40% of mangroves in

Figure 3. Land cover in 1996, 2007, 2016 (top panel) andmangrove loss and gain in 1996–2007 and 2007–2016 in Tanintharyi Region.
Persistence of extensivemangrove areas can be observed such as along the coastlines ofMyeik andKawthoungDistricts.Mangrove
conversion into oil palm is a systematic transition that can be observedmore prominently inmany parts of Tanintharyi [1]. Also,
mangroves were converted into rubber plantations such as in I1 [2], albeit this transition is non-systematic.Mangroves were
systematically gained from rice paddy during I1 [3] and frombuilt-up areas in both intervals [4].
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Wunbaik Reserved Mangrove Forest in Rakhine State
into shrimp farms and rice paddies (figure 5), along
with degradation due to illegal wood cutting, brick-
baking, and bark peeling (Stanley et al 2011, Stanley
and Broadhead 2011, Saw and Kanzaki 2015), high-
lighting the challenges to contemporary protected area
management in Myanmar. The Forest Department
operated from 1972–2002 without a mangrove forest

management working plan, but nevertheless imple-
mented a quota system to meet revenue targets for
fuelwood extraction and charcoal production, which
greatly facilitated mangrove degradation (Oo 2002).
Other broad underlying drivers of mangrove loss
identified for Myanmar include increasing population
density (Richards and Friess 2015), the low economic
valuation attributed to mangrove resources compared

Figure 4. Land cover in 1996, 2007, 2016 (top panel) andmangrove loss and gain in 1996–2007 and 2007–2016 in AyeyarwadyRegion.
TheMeinMaHlaKyunWildlife Reserve held some of the remainingmangrove areas (i.e.mangrove persistence in both time-intervals
covering the 20-year period) in theAyeyarwadyDelta.Mangrove conversion into rice paddies weremuchmore extensive in I1
compared to I2, of which [1] shows extensivemangrove loss for rice paddy farming that were converted permanently. Somemangrove
areas were converted into built-up areas [2], albeit this transition frommangrove to built-up is non-systematic.Mangrove gains in the
Delta can be observed, of which [3] shows persistent areas ofmangroves observed during I2 that came frommangrove gains from rice
paddy during I1.Mangrove gains fromoil palmwere observed as a systematic transition during I1 [4].Mangrove gains from rice
paddy, shrub/orchard, and built-up area were also observed as non-systematic transitions [5].
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to other non-mangrove resources (Oo 2002), and
Myanmar’s heavy dependency on biofuel-based
energy needs as some mangrove species are widely
used for firewood/charcoal due to high caloric con-
tent and prolonged burning capability (Veettil et al
2018).

Reversion of water bodies intomangrove was indi-
cated as the most common targeted systematic gain by
mangroves. This is not surprising given that retired
aquaculture pondsmay have little alternative use other
than mangrove restoration (Stevenson et al 1999).
Community-based mangrove reforestation pro-
grammes have been promoted by both government
and non-government agencies, and have targeted
abandoned agricultural land or degraded mangrove
habitats (Zöckler et al 2013, Veettil et al 2018); these
programmes have been buttressed by multiple pieces
of legislation that protected Myanmar’s mangroves
and reinforced the role of local communities in forest
management through participatory forest manage-
ment bodies (e.g. 1992 Forest Law 1995 Forest Act,
Locally Owned Forest Plot Directives, 1995 Policy of
Myanmar Forest) (Oo 2002). Aside from active
restoration or rehabilitation, mangrove forests can
rapidly (re-)colonise open mudflats or abandoned
aquaculture mudflats, provided that the geomorpho-
logical conditions are appropriate for mangrove

establishment (Friess et al 2012). Finally, systematic
transitions with bare ground along with field observa-
tions of mangrove gains along the coastlines (Bago,
Mon, and Yangon) suggest newly accreted lands or
‘wasteland’ were targeted for mangrove reforestation
initiatives.

4.2. Analysing gross land cover transitions provided
robust insights onmangrove cover change
Whereas land cover and change estimates are expected
to vary to a certain degree across studies, mangrove
estimates have exhibited huge variance across studies
(Friess and Webb 2014). Estoque et al (2018) revealed
that using global datasets to infer national-level
statistics—a practice facilitated by the introduction of
global high-resolution forest change maps—may
introduce severe inaccuracies, demonstrating the need
for methods that are scale-relevant. In their study of
mangrove cover change for Myanmar using Landsat
data, they estimated 6668 km2 of mangrove cover in
2000 with an annual net loss rate of 2.41% (recalcu-
lated using equation (7) in Puyravaud 2003 for the
2000–2014 period). An estimated 11 459 km2 in 2000
based on our data (also calculated using equation (7) in
Puyravaud 2003 for I1) and annual net loss rates of
3.60%–3.87% were higher than those estimates. They
further estimated gross mangrove losses of 2047 km2

Table 2. Summary of systematic transitions ofmangrove loss andmangrove gain in sub-national units ofMyanmar
at two time-intervals across a 20-year period. The land cover types included bare ground (BRG), built-up area
(BUA), forest (FOR), mangrove (MNG), oil palmmature (OPM), rubbermature (RBR), rice paddy (RPD), shrub/
orchard (SHB), water body (WTR).

Mangrove loss Mangrove gain

1st interval 2nd interval 1st interval 2nd interval

Region/State Target Avoid Target Avoid Target Avoid Target Avoid

Ayeyarwady OPM OPM BRG OPM FOR FOR

BUA RBR

FOR

SHB

Bago BUA FOR BUA BRG OPM BRG OPM FOR

OPM OPM FOR WTR FOR RBR

RBR WTR RBR RBR WTR

WTR SHB SHB

Mon BUA BRG OPM FOR BRG FOR BRG FOR

OPM WTR WTR BUA RBR RBR

RBR OPM SHB SHB

SHB WTR

Rakhine BRG FOR OPM FOR BRG FOR RPD FOR

BUA RPD WTR RBR WTR RBR

RPD WTR

Tanintharyi BUA FOR OPM FOR BRG FOR BUA FOR

OPM RPD BUA RBR RBR

RPD WTR RPD

WTR

Yangon OPM BRG OPM BRG WTR FOR BRG RBR

RBR WTR BUA RBR OPM SHB

WTR FOR SHB WTR

RBR

SHB
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(31% of 2000 mangrove extent) between 2000 and
2014, whereas we calculated more extensive losses of
6330 km2 in I1 and 3588 km2 in I2. However, their
estimates, as well as most previous estimates, were
based on Landsat data only, and with the utilisation of
multi-sensor data, our estimates—which exhibited
high accuracies for both land cover and mangrove
change maps—revealed a greater mangrove extent in

1996, and a faster net deforestation rate than previous
studies (figure 6; table 1). Our methods not only
advance geospatial analysis of mangrove cover change
and other land cover change assessments by incorpor-
atingmulti-sensor satellite data, but in addition, reveal
the complete dynamics of mangrove cover change by
quantifying gross land cover transitions.We recognise,
however, that area estimates reported in our study do

Figure 5. Land cover in 1996, 2007, 2016 (top panel) andmangrove loss and gain in 1996–2007 and 2007–2016 in Rakhine State. Large
persistentmangrove areas remained in both time-intervals covering the 20-year period such as inWunbaik ReservedMangrove Forest
towards the northeast portion of Ramree Island.Mangrove conversion into rice paddies was a systematic transition in both intervals,
of which [1] shows rice paddy expansion during I2 through conversion of previously persistentmangrove areas during I1.Mangrove
conversion during I1 into bare ground [2]was a systematic transition, whereas conversion into shrub/orchard [3]was a non-
systematic transition.Mangrove loss intowater bodywas observed as a systematic transition during I2 [4], whichmay indicate
conversion ofmangroves into aquaculture ponds.Mangroves that were gained from rice paddies during I1were subsequently
converted back into rice paddies during I2 [5].
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not reflect area adjustments accounted for by accuracy
assessments given our above-mentioned considera-
tions. The results of the two approaches we implemen-
ted for accuracy assessments (i.e. Aldwaik and
Pontius 2013 and Olofsson et al 2014), nevertheless,
lent greater confidence to our estimates and analysis of
the proximate causes and underlying drivers of
mangrove change.

Gross land cover change estimates are critical for a
comprehensive evaluation of landscape change (Han-
sen et al 2010), thus representing the complete change
dynamics for a region of interest. Through these calcu-
lations, we have demonstrated that Myanmar’s man-
grove deforestation crisis is in full swing and is the
result of complex proximate and underlying drivers.
Nearly two-thirds of (presumably) high-quality man-
grove forest have been lost since 1996, either con-
verted to another land cover type permanently, or
temporarily and then replaced by lower quality early
successional mangrove forest or plantation. This is
important given the high ecosystem services value for
mangroves, including protection from both tsunamis
and storm surges (Dahdouh-Guebas et al 2005,
Kathiresan and Rajendran 2005, Fritz et al 2009, Esto-
que et al 2018). It is important to recognise that

although it is beneficial in the long run to rehabilitate
degraded and deforested mangroves, a significant lag
time will occur between the initiation of restoration
and the maturation of those ecosystem services. Only
by quantifying gross changes can variations in ecosys-
tem services over time be accurately evaluated.

Aside from providing a fuller picture of mangrove
deforestation dynamics, gross land cover change ana-
lysis facilitated the identification of land cover transi-
tions, which as a result, revealed the complete
dynamics of mangrove cover change, including the
‘destination’ classes for mangrove loss as well as the
‘source’ classes for mangrove gain. This allowed us to
quantify the counterbalancing effect of mangrove
restoration efforts, which led to mangrove gains in
Ayeyarwady and Rakhine (Maung 2012, Aung et al
2013, Zöckler et al 2013, Veettil et al 2018) (table 1). In
this case, while reforestation and natural regeneration
were documented as contributing to positive gains in
mangrove cover, it highlights the critical need to fur-
ther invest in management strategies that aim to fur-
ther increase gross mangrove gains. Gross land cover
change analysis also allowed for a spatially explicit
assessment of mangrove persistence, which could be
critical in identifying core areas for protection,

Figure 6.Comparison of reportedmangrove areal extents for a specific year at country- and region/state-levels inMyanmar by
various studies, including (A) this study, (B)Blasco andAizpuru (2002), (C)Blasco et al (2001), (D)Bunting et al (2018), (E)Connette
et al (2016), (F)DeAlban et al (2018), (G)Estoque et al (2018), (H) FAO (2010), (I)Gaw et al (2018), (J)Giri et al (2008), (K)Giri et al
(2011), (L)Hamilton andCasey (2016) usingMangrove Forests of theWorld data, (M)Hamilton andCasey (2016) usingTerrestrial
Ecoregions of theWorld data, (N) IUCN (1983), (O)Maung (2012), (P)Oo (2002), (Q)Richards and Friess (2015), (R) Spalding
(1997), (S)Webb et al (2014), (T)Weber et al (2014), and (U)Zöckler et al (2013).
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especially ‘frontier’ mangrove forests with relatively
high conservation value (figures 3–5). Interventions
could therefore include protection of remaining core
areas of mangroves, potentially leading to improved
conservation outcomes.

Moreover, gross change statistics are necessary for
Intensity Analysis, which enabled us to determine with
high confidence the proximate causes of mangrove
change, including the relationship (i.e. systematic or
not) between land cover types. While Intensity Analy-
sis may not be necessary to reveal the most important
proximate causes in terms of area, the identification of
systematic transitions revealed a ‘co-dependent’ rela-
tionship between mangrove conversion and the gain
of the destination land cover type. For example, the
gains of oil palm, water bodies, and built-up areas in
this study were dependent onmangrove loss in several
sub-national units.While other studies used net statis-
tics to impute oil palm and aquaculture as drivers of
deforestation in Myanmar (Primavera 2006, Stibig
et al 2014, Richards and Friess 2015), quantitative
accounting of systematic transitions provides unas-
sailable evidence of mangrove clearing for oil palm, or
highlight intervention needs such as improved plan-
ning concerning aquaculture expansion inmangroves.
This is particularly important as economic policies in
Myanmar promote private sector investments in oil
palm and aquaculture (Scurrah et al 2015, Belton et al
2018).

4.3. Recommendations
Gross land cover change analyses can be applied to
assessments of emergent corporate ‘zero deforesta-
tion’ policies. High-profile corporate no-deforestation
policiesmay, in fact, be ‘zero net deforestation’policies
(e.g. Colgate-Palmolive Company 2019, Unile-
ver 2019), which could allow for gross losses as long as
they are counterbalanced by gross gains through
reforestation. Our study emphasises the fact that
monitoring gross changes is an effective method to
estimate the internal land cover change dynamics
contributing to net deforestation with important
implications for critically analysing the changes in
ecosystem services associatedwith those policies.

The findings fromour spatial analysis ofmangrove
change can help inform policymakers and planners in
evaluating the impacts of the national government’s
agricultural modernisation policy as well as the effec-
tiveness of mangrove restoration programmes or the
management of protected areas where mangroves are
found, and in designing site-specific strategies to keep
remaining mangroves intact and to halt the further
loss of mangroves. Our approach can also be applied
in studying the change dynamics of mangroves else-
where that can provide a deeper and more nuanced
understanding of the associated drivers of mangrove
change.
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