Diadromous Fishes in the

Lower Mekong Basin

An V. Vu

Yangon, 01 October 2019

Supervisors: Lee Baumgartner, Wayne Robinson, Martin Mallen-Cooper, Julia Howitt, Ian Cowx

Diadromous: migrate between the **Fresh & Marine**

Mekong River: 10th longest river in the world with 4,909 km: 2,198km in China & 2,711km through 5 countries

4.4 million tons of fish

production.

17 billion

\$US are the total value of the fisheries

<u>~1,200</u> Fish species.

<u>80%</u>

of people in the LMB depend directly and indirectly on natural systems for food security, livelihoods and customs.

<u>50 kg</u>

of fish are consumed by a person a year. Fish is the 2nd largest dietary component (18%),

60 million

people live in the Mekong basin.

<u>2/3</u>

of the rural population participate in fishing to a certain extent for food and employment.

Fish migrations:

- Fish species diversity: ~1200 species
 - Unknown status: 35%
 - Threatened species: 8%
- Migratory fishes: 37% of total catch (SEA, 2010).
 ~ 600,000 tons/yr of migrant fish at risk.
- 3 fish migration systems:
 - Upper
 - Middle
 - Lower
- Spawning habitat
- Migrate all seasons of year.

Diadromous (*migrate between fresh and marine waters*): Anadromous + Catadromous

+ Amphidromous

Number fish species by guild types in the Mekong River

Proportion of Diadromous fish species

Proportion of Diadromous fish catch

- Very few species was confirmed.
- Other species: local knowledge/ elsewhere
 - \rightarrow Need to be confirmed

Relationship between elements and salinity in the LMB (*Pearson correlation*)

	S‰	Ва	Са	Cu	Mn	Se	Sr	Zn
S‰	1							
Ва	-0.296	1						
Са	0.989	-0.269	1					
Cu	0.681	-0.135	0.708	1				
Mn	-0.324	0.346	-0.317	-0.027	1			
Se	0.693	-0.083	0.713	0.709	-0.232	1		
Sr	0.990	0.283	0.999	0.711	-0.321	0.718	1	
Zn	-0.085	0.031	-0.080	-0.102	-0.144	-0.099	-0.083	1

Salinity (ppt)

Otolith microchemistry

Otolith microchemistry

Adelaide Microscopy The University of Adelaide

Laser Ablation -Inductively Coupled Plasma Mass Spectrometry (LA – ICPMS):

Measure elements on otolith plane

Scanning X-ray Fluorescence Microscopy (SXFM)

Australian Synchrotron

Irrawaddy River

Plotosus canius:

Distance from the core (μm)

Low

High

Next step...

Laser Ablation - Inductively Coupled Plasma Mass Spectrometry

(LA-ICPMS)

Adelaide Microscopy The University of Adelaide

